Ответы на вопросы к кандидатскому экзамену

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.



24. Особенности эмпирического знания.

Сообщений 1 страница 2 из 2

1

24. Особенности эмпирического знания. Эксперимент, наблюдение, измерение в науке. Проблема теоретической нагруженности фактов науки.

0

2

24. Особенности эмпирического знания. Эксперимент, наблюдение, измерение в науке. Проблема теоретической нагруженности фактов науки.
В структуру эмпирического знания включают обычно наблюдение, эксперимент, измерение. Они же часто рассматриваются и в качестве методов эмпирического исследования. Кроме того, в эту структуру включают анализ и сравнение фактов, первичную систематизацию опытного материала. Формы представления такого подвергшегося первичной систематизации материала были рассмотрены в начале курса (оформление эмпирического базиса, выражение его в системе протокольных предложений, приведение к нормальным дизъюнктивным или конъюнктивным математическим формам выражения и т.п.).
Научное наблюдение есть целенаправленное и организованное восприятие, основанное на получении, переработке и синтезе чувственных впечатлений исследователя. Наблюдение применяется в случаях, когда:
а) объект или процесс недоступен (ввиду удаленности, как в астрономии, либо агрессивности среды, не позволяющей использовать экспериментально-измерительную базу);
б) экспериментальное вмешательство в исследуемый процесс изменяет его естественный ход (например, в социальных процессах, когда бывает предпочтителен метод «включенного наблюдения», или в ряде наблюдений квантово-механических эффектов и в других аналогичных ситуациях явного и существенного воздействия наблюдателя на наблюдаемый процесс).
Наблюдение активно, что означает сознательный поиск фактов, в котором ученый руководствуется некоторой гипотезой или прежним опытом. Следовательно, уже в наблюдении факты, с одной стороны, «упрямая вещь», но с другой – являются теоретически нагруженными, избирательными, работающими на подтверждение или опровержение теоретических гипотез. В этом смысле утопией является поиск т.н. «чистых» или «окончательных» фактов как данных опыта. Действительным результатом научного наблюдения оказываются не факты, а то, что Р. Карнап называл «протокольными суждениями», некие зарегистрированные описания наблюдаемого. Отметим, что факт по значению этого понятия – это либо знание о единичном событии (например, факт, что я сейчас, такого-то числа в таком-то месте, читаю лекцию), либо совокупность высказываний, фиксирующих результаты наблюдения, измерения, эксперимента (факт, что доска, на которой я пишу, твердая и плоская, зеленого цвета, ее длина составляет около трех метров). Науку интересуют прежде всего факты во втором значении, именно они в определенных условиях становятся научными фактами. Факты такого рода всегда содержат долю истолкования. Они становятся «упрямой вещью» только в рамках определенных интерпретаций.
Основные функции наблюдения – получение информации, проверка гипотез, сопоставление теоретических результатов по данным наблюдения с целью установления истинности как соответствия теории фактам наблюдения.
Наблюдения в науке интерсубъективны, что является условием достижения их объективности. Они могут носить непосредственный или косвенный характер. Особенность последних заключается в том, что исследуемые объекты представлены в науке через восприятие и фиксацию результатов взаимодействия ненаблюдаемых объектов с наблюдаемыми. В этом случае теоретическая нагруженность фактов становится вполне очевидной, ибо необходимо допустить существование закономерной связи между непосредственно ненаблюдаемым и теми эффектами, которые оно вызывает в наблюдаемом.
Эксперимент отличается от наблюдения тем, что в нем достигается прямое взаимодействие с изучаемым объектом или процессом, непосредственный доступ к исследуемой реальности. Здесь уже возможно измерение по шкалам интервалов или отношений, введение строгих математических методов обработки данных. Считается, что первым экспериментальный метод начал применять Г. Галилей в физике. Научный эксперимент предполагает следующие возможности:
– выделить изучаемое явление по ограниченному числу параметров, относимых либо к самому явлению, либо к условиям его протекания;
– изолировать его по всем другим параметрам, принимаемым за несущественные;
–   варьировать существенные параметры;
–  многократно воспроизводить эксперимент вместе с его  условиями.
Ранее экспериментом считали только воздействие на изучаемый объект с помощью материальных средств (экспериментальных установок и приборов).
С 90-х годов ХХ века некоторые ученые используют понятие вычислительного, или математического эксперимента (Н.Н. Моисеев и др.).  Более строго было бы называть это модельным экспериментом с идеальной логико-математической моделью. То же следует сказать о так называемых «мысленных экспериментах», они носят преимущественно качественный характер.
Качественным эксперимент называют, если он не включает процедуру измерения. Скажем, когда речь идет о сравнительном анализе по типу «больше» или «меньше». Пример – шкала Мооса для определения твердости материалов. Количественный эксперимент предполагает точное измерение всех существенных параметров. Для этого используется измерительная и регистрирующая аппаратура, а также методы математической обработки результатов. Когда говорят, что наука начинается с измерений, имеют в виду количественные эксперименты.
Функции эксперимента те же, что и у наблюдения, хотя отличаются по интенсивности, возможностям обоснования соответствия, истинности.
Среди экспериментов особо выделяется измерительный эксперимент. Измерение – это процедура приведения в соответствие с некоторым заранее заданным эталоном для количественного сравнения. Установление количества достигается введением единицы (меры) измерения.
Поэтому относящимися к собственно измерениям принято считать шкалы интервалов и отношений (фиксируют отношение, меру), что реализуется в измерительных приборах (усилители, анализаторы, преобразователи, включая регистраторы; собственно измерители, ИИС). Приборы преобразуют изучаемые и обычно непосредственно органам чувств человека недоступные явления в наблюдаемые, фиксируемые, опосредствованно доступные.
Роль прибора и эмпирического знания в науке исключительна. Рациональность продуктивна, когда она опирается на серьезный эмпирический базис. Но при этом следует помнить об основной слабости индуктивного вывода: он дает вероятное, а не достоверное обоснование знания. Это средство «проверки воображения», а уже во вторую очередь – получения знаний путем наблюдения.
Для перехода к анализу состава (структуры) научной теории вспомним определение предмета философии науки. Ранее мы  отмечали, что таковым является исследование условий возможности науки, сферы и границ научности, критериев последней. Анализ определения и функций науки позволяет дополнить: а также исследование целей, мотивов, ценностей и технологий деятельности человека по получению (производству) новых знаний в различных культурно-исторических условиях. Отсюда проистекают основные функции философии по отношению к науке: онтологическая, гносеологическая, методологическая, а также все более осознаваемая в последнее время антропо-аксиологическая. По отношению к научным теориям, в первую очередь фундаментальным, философия выполняет также эвристически-селективную функцию, поскольку из множества умозрительных комбинаций исследователь реализует только те, которые согласуются с его мировоззрением. Последние две функции особое значение приобретают в период научных революций, или смены парадигм.
Рассмотрим теперь структурные элементы собственно научной теории. Научная теория – это логически упорядоченная система знаний, имеющая в своем составе по меньшей мере три структурных элемента. Первый – ядро теории, состоящее из выраженных в математической форме одного или нескольких основополагающих законов, исходных фундаментальных понятий, принципов, аксиоматических допущений. Законы формулируются в виде суждений, имеющих необходимый и общий характер. Закон – это устойчиво повторяющееся, существенное отношение между вещами или процессами. Закон выражает отношения зависимости, взаимосвязи, корреляции между ними. Различают законы функциональные, с горизонтальными связями, и эволюционные, с вертикальными, асинхронными, несимметричными во времени связями, типа причинных, – законы новообразования, развития. К ядру теории относят также ее идеализированный объект, предельную абстракцию или модель наиболее значимых для данной теории свойств и связей типа материальной точки или центра масс в механике, идеального газа в кинетике газов, абсолютно черного тела в оптике, идеального цикла Карно в теплотехнике и т.п. Второй структурный элемент теории – периферия, включающая методы, математико-логический аппарат, который составляет совокупность правил обработки знаний и способов аргументации. К периферии относят обычно философские нормы и принципы1, ценностные установки ученого, если они принимаются в расчет (а это имеет место не во всех концепциях философии науки). Сюда же отнесем наглядные образы теории, посредством которых достигается чувственно-сверхчувственный характер интерпретации ее утверждений. Благодаря предлагаемым авторами наглядным моделям типа атома или химических соединений мир теории предстает как более близкий, понятный как для самих исследователей, так и для тех, кто впоследствии обучается по этим моделям. Но эти образы не могут быть отнесены к эмпирическому базису, так как носят посттеоретический характер. К периферии отнесем, с учетом возможных возражений, проблемы и гипотезы. Это важные формы развития знания, которые не входят в ядро теории, но очень часто инициируют изменение последнего. Проблема в науке – это своеобразное «знание о незнании», она открывает направление возможной дальнейшей разработки теории. Попытки решить проблему оформляются первоначально в гипотезы – суждения предположительного характера с неопределенным значением истинности. Наука начинается с постановки проблем и формулирования гипотез, одни из которых отмирают в процессе фальсификации (как гипотезы флогистона или теплорода, а в ХХ веке – эфира), другие же становятся теориями (как квантовая гипотеза). Интересно, что до ХХ века считалось обязательным соответствие выдвигаемых гипотез правилам формальной логики. Сегодня это требование значительно смягчено: уже Луи де Бройль, выдвинув гипотезу о наличии у микрообъектов корпускулярных и волновых свойств одновременно, продемонстрировал его невыполнимость в полном объеме. По-видимому, правильнее говорить о соответствии гипотезы какой-либо принятой логике, включая трех- или многозначные, размытые и другие, признанные в научном сообществе. Наконец, третий структурный элемент теории – эмпирический базис, совокупность высказываний, описывающих результаты опытов, наблюдений, экспериментов, измерений количественных параметров. Иногда их называют протокольными высказываниями о фактах. Факт в науке понимается либо как доказанное знание о событии (например, факт, что я пишу эти строки в такой-то день и час 2007 года), либо как предложение, фиксирующее результат наблюдения, измерения, эксперимента («стол, за которым я сижу, твердый и плоский, его длина составляет примерно два с половиной локтя»). Науку интересуют прежде всего факты во втором значении, и факт такого рода всегда содержит долю истолкования. Факты становятся «упрямыми» в рамках определенных интерпретаций.

0